
LINSTOR open source software man-
ages block storage in large Linux clus-
ters and simplifies the deployment of
high availability with distributed rep-
licated block device version 9 (DRBD
9), dynamically provisioning storage
and simplifying storage management
for Kubernetes, Docker, OpenStack,
OpenNebula, and OpenShift through
integration. Alternatively, the soft-
ware can take care of high availability
with DRBD exclusively. In this article,
I look into the setup and operation of
the tool.
At first glance, storage automation
appears to be a simple problem: It’s
been a long while since the tasks
of creating, enlarging, and deleting
storage volumes were subject to the
restrictions imposed by the size of
individual storage devices or the size
and position of the slices or parti-
tions created on them. Technologies
such as the Logical Volume Manager
(LVM) or the Zetabyte filesystem
(ZFS) have long made it possible
to manage storage pools in which
almost any number and any size of
storage volume can be created or de-
leted with equal ease.
At first glance, it might seem easy
enough to automate these manual
tasks with a few scripts. However,

automation requires attention to tiny
details and holds many potential
pitfalls for the admin, as well. What
is not noticeable in manual admin-
istration can quickly lead to prob-
lems in automation – for example,
when device files do not yet exist
in the /dev filesystem, even though
the respective command for creat-
ing a volume has already reported
completion, or if you want to delete
volumes that are no longer mounted
but are in use by the udev subsys-
tem. If the requirement to manage an
entire cluster centrally, and not just
a single system, is added, it is clear
that a few rough-and-ready scripts
are not up to the task.

Three Components
In these cases, LINSTOR [1] from
LINBIT enters into play. It is an
open source software bundle com-
prising several components for stor-
age cluster management. It supports
not only the creation, scaling, and
deletion of individual simple vol-
umes on one of the storage cluster
nodes, but also the replication of in-
dividual volumes or the replication
of consistency groups of several vol-
umes between several cluster nodes.

This process is handled by DRBD
replication technology. You can also
use LINSTOR to configure additional
functionality for volumes, such as
encryption or data deduplication.
Especially with more complex stor-
age technologies like DRBD, the
software automatically manages
various system resources, including
the necessary TCP/ IP port numbers
for the replication links or the “mi-
nor numbers” for the device files on
the /dev filesystem. Calculating the
storage space required for the DRBD
metadata is also automated.
LINSTOR has essentially three com-
ponents:
1. The LINSTOR controller manages

the configuration of the entire clus-
ter and must be executable on at
least one node of the cluster. For
reasons of high availability, the
controller is normally installed on
several nodes.

2. The LINSTOR satellite runs on each
node of the storage cluster, where
it performs the steps required to
manage the storage space auto-
matically.

3. LINSTOR clients complete the
package. On the one hand, this
could simply be the command-line
application, known as the LINSTOR

LINSTOR is a toolkit for automated cluster management that takes the complexity out of DRBD management and
offers a wide range of functions, including provisioning and snapshots. By Robert Altnoeder

Le
ad

 Im
ag

e
©

 s
de

co
re

t,
 12

3R
F.c

om

Storage cluster management with LINSTOR

 Digital Warehouse

40 A D M I N 58 W W W. A D M I N - M AGA Z I N E .CO M

TO O L S LINSTOR

client, which can be used to oper-
ate LINSTOR both manually and
by scripting. On the other hand,
it could be a driver that provides
integration with the storage man-
agement of other products, such
as virtualization environments like
OpenStack, OpenNebula, or Prox-
mox, or container technologies like
Kubernetes.

All of these components are network
transparent, which means, for ex-
ample, that a client does not run on
the same node as the controller with
which that client communicates.

Installation
To install LINSTOR, you need at least
version 8 of the Java Runtime Envi-
ronment (JRE), which is normally
installed as a dependency when
installing the distribution packages.
Whether this is OpenJDK, Oracle
HotSpot VM, or IBM Java VM is not
important.
The package is usually installed in the
directory trees for the respective type
of file or directory, so that configura-
tion data ends up in /etc, variable
data like logs and reports in /var/log,
and program libraries in /usr/share/
linstor-server/lib. With command-
line parameters or entries in the con-
figuration file, LINSTOR also offers the
option of installing the components in
other paths.
By default, the LINSTOR control-
ler relies on an integrated database,
which is automatically initialized the
first time the controller is started. For
larger installations, you can also con-
figure the controller to use a central
SQL database, such as PostgreSQL,
MariaDB, or DB2.
After installing from the distribution
packages, start the modules installed
on the respective node with systemd:

systemctl start linstor controller
systemctl start linstor satellite

Here, I kept the default LINSTOR
configuration settings for the network
communication of the individual
components, the resource pools to
be used, TCP/ IP port ranges, minor

the initial configuration. The client re-
quires the hostname or IP address of
the cluster nodes on which a control-
ler can run to be able to communicate
with the active controller. Set the
LS_CONTROLLERS environment variable
before you start the LINSTOR client.
If you do not specify any further pa-
rameters, the client launches in inter-
active mode:

export LS_CONTROLLERS=192.168.133.11
linstor

Typically, you will start the configura-
tion work with the node objects that
represent the individual cluster nodes
of the storage cluster. When you create
a node on the controller, you define
the IP address (and the port, if neces-
sary) that the controller uses to com-
municate with the satellite component
on the respective cluster node. You can
also define – especially for more clar-
ity in the cluster – whether the cluster
node runs a controller, a satellite, or
both components. The name under
which the cluster node is registered
on the controller is, of course, also
required. Ideally, this name should
match the node name of the respective
cluster node. You can define this name
with the uname -n command. The do-
main name can be omitted if it is not
absolutely necessary to differentiate
between the individual nodes:

number ranges, DRBD peer slots, and
the like. Also, I will not be using SSL-
encrypted connections, because the
setup steps required to customize all
of the options would go beyond the
scope of this article.

Configuring the Cluster
Before you start creating your cluster
configuration and storage pools in
LINSTOR, it is important to under-
stand some basic concepts, including
the various objects and the logical
dependencies between them. The
most important of these objects are the
node, network interface, storage pool
definition and storage pool, resource
definition and resource, and volume
definition and volume. The respective
definition objects each manage infor-
mation that is identical for all objects
of the respective definition category
throughout the cluster (i.e., on all
cluster nodes). For example, a volume
definition contains information that is
identical on all cluster nodes, such as
the size of a volume replicated across
multiple cluster nodes. As a result of
this principle, there are dependencies
between these objects. To be able to
create an initial volume, you first need
to create the required objects in a se-
quence that reflects the dependencies.
You can use the LINSTOR client to
manage the controller manually for

Figure 1: Overview of all created nodes and network interfaces.

41A D M I N 58W W W. A D M I N - M AGA Z I N E .CO M

TO O L SLINSTOR

node create --node-type Combined U

 romulus 192.168.133.11
node create --node-type satellite U

 remus 192.168.133.12
node create --node-type satellite U

 vulcan 192.168.133.13
node create --node-type satellite U

 kronos 192.168.133.14

In addition to the required network
interface, which you created when
you created the node, you can now
create further network interfaces
(Figure 1). For example, if you want
to use DRBD, you can use these ad-
ditional network interfaces to distrib-
ute the replication links for different
DRBD resources to these interfaces:

node interface create romulus U

 drbd 192.168.144.11
node interface create remus U

 drbd 192.168.144.12
node interface create vulcan U

 drbd 192.168.144.13
node interface create kronos U

 drbd 192.168.144.14

After you have registered all the
nodes, move on to create the respec-
tive storage pools that are available
on the nodes for automatic storage
management. The storage pool defini-
tion is automatically created when
the first storage pool is created. Nev-
ertheless, it is important that you are
aware that this storage pool definition
exists, because deleting the last stor-
age pool does not automatically de-
lete the storage pool definition.
When you define a storage pool,
you specify what type of pool it
is (e.g., an LVM Volume Group or

a ZFS zpool)
and whether
thick or thin
provisioning is
used. Depend-
ing on the
type of pool,

you specify the name of the volume
group, the LVM thin pool, or the ZFS
pool as a parameter for the LINSTOR
storage pool driver. Of course, the
storage pool object also has a unique
name, which you can choose freely,
observing the permitted characters
and length restrictions.
The name DfltStorPool (Default Stor-
age Pool) plays a special role, because
the controller automatically selects
this pool if you do not specify a stor-
age pool in the various definition
objects or in the resource or volume
object when you create your storage
resources later.
The command

storage-pool create lvmthin romulus U

 thinpool drbdpool/thinpool

creates a storage pool named thinpool
with the LVM driver (Figure 2).

Working with LINSTOR
Now that at least a minimal LINSTOR
configuration has been completed,
you can define the initial resources
and their volumes and generate them
on one or more cluster nodes. It is of-
ten a good idea to start with a simple
configuration first to check that all
the components are working properly.
Therefore, the first example only cre-
ates a single local LVM volume. As
a first step, you need to create the
definition for the resources whose
volumes use only the storage layer
and select LocalData as the name for
the resource definition, and thus also
for their resources:

resource-definition create U

 --layer-list storage LocalData

Now, add a single volume of 150MB
to the resource definition named Lo-
calData:

volume definition create LocalData 150m

Finally, on the cluster nodes vulcan
and kronos, create a resource associ-
ated with these definitions with the
thinpool storage pool for the volume
of the respective resource:

resource create --storage-pool thinpool U

 vulcan kronos LocalData

If these steps complete without er-
ror, the list of LVM logical volumes
on cluster nodes vulcan and kronos
should now contain an entry for a
volume named LocalData_00000
(Listing 1). You can then format and
mount this LVM logical volume in the
usual way.
The next application example will
be a bit more sophisticated: This
time there will be a resource with
a volume that replicates triple-
redundantly on three of the cluster
nodes with DRBD. When you create
the resource definition, you therefore
select the layers drbd and storage
in the layer list, and the resource is
given the name SharedData to match
the replication of the volume:

resource-definition create U

 --layer-list drbd,storage SharedData

Again, add a single volume of 150MB
to this resource:

volume definition create SharedData 150m

This time, leave the selection of
the cluster nodes to the LINSTOR
controller by specifying only

Figure 2: List of created storage pools.

vulcan ~ # lvs drbdpool
 LV VG Attr LSize Pool Origin Data% Meta% Move
 LocalData_00000 drbdpool Vwi-a-tz-- 152.00m thinpool 0.04
 thinpool drbdpool twi-aotz-- 300.00m 0.02 10.94

Listing 1: LVM Logical Volumes

42 A D M I N 58 W W W. A D M I N - M AGA Z I N E .CO M

LINSTORTO O L S

at the DRBD level. As a result, the
data on the back-end storage volume
used by DRBD does not change, and
different cluster nodes can create the
snapshot at different times. I/ O is not
released again at the DRBD level until
the snapshot has been created on all
cluster nodes.
Creating snapshots is similar to the
process for resources. However, you
do not have to take a snapshot on all
cluster nodes on which the resource
exists. Instead, you select the cluster
nodes on which the snapshot will be
created when you grab it:

snapshot create romulus remus U

 SharedData Snap1

You can use a snapshot either to create
a new resource based on the snapshot’s
dataset (snapshot resource restore) or
to roll back the resource from which
you took the snapshot to the snapshot
version (snapshot rollback).
However, both actions can only be
performed on the cluster nodes on
which the snapshot is available. It
is easier to restore the snapshot to a
new resource. To do this, first create
an “empty” resource definition (with-
out volume definitions) for the new
resource:

resource-definition create U

 SharedData_Restore
volume definition create U

 SharedData_Restore 150m

You can then restore the snapshot to
the new resource:

replica to the vulcan node by assigning
a LINSTOR resource to the node:

resource create -s thinpool vulcan U

 SharedData

After DRBD has completed the re-
sync, you can delete the replica on
kronos:

resource delete kronos SharedData

To remove a resource from all clus-
ter nodes permanently, you can also
delete the resource definition of this
resource directly; that is, the resource
is first deleted from all cluster nodes
on which it was created:

resource definition delete LocalData

The resource definition, including the
volume definitions it contains, is au-
tomatically deleted only after all clus-
ter nodes have reported a successful
cleanup to the controller.

Working with Snapshots
For volumes located in a storage pool
based on thin provisioning (i.e., cur-
rently, storage pools with the lvmthin
and zfsthin drivers), LINSTOR also
provides cluster-wide snapshot func-
tionality, not only for local storage
volumes, but also for storage volumes
replicated by DRBD.
To create snapshots of replicated vol-
umes that are identical on all cluster
nodes involved, LINSTOR stops I/ O
activity on the resource in question

the required redundancy for the
--auto-place option:

resource create --storage-pool thinpool U

 --auto-place 3 SharedData

The list of resources and volumes
shows which nodes the controller
has selected for the replicated DRBD
resource and which resources are
automatically available for it. In this
case, the cluster nodes kronos, remus,
and romulus were automatically se-
lected to provide the required triple-
redundancy of the volume replicated
by DRBD. TCP/ IP port 7000 was
reserved for network communica-
tion by the DRBD resource, and the
DRBD volume was assigned a minor
number of 1000 (Figure 3). The vol-
ume can be found as the drbd1000
entry in the /dev directory. The actual
storage space for the data is again
provided by an LVM logical volume,
which appears in the output of the
lvs drbdpool command as Shared-
Data_00000.
Now that storage management is
automated, retroactive modification
of existing storage resources is very
easy. For example, you can easily
migrate one of the existing replicas
to another cluster node by first add-
ing a fourth replica and then remov-
ing one of the original replicas. If
you wait for a DRBD resync, the
triple-redundancy of the volume is
never compromised.
As an example, migrate the DRBD-
Resource replica between the cluster
nodes kronos and vulcan. First add the

Figure 3: Lists of resources and volumes.

43A D M I N 58W W W. A D M I N - M AGA Z I N E .CO M

TO O L SLINSTOR

snapshot resource restore U

 --from-resource SharedData U

 --from-snapshot Snap1 U

 --to-resource SharedData_Restore U

 romulus remus

When restoring a snapshot, it is again
possible to select a subset of the clus-
ter nodes on which the snapshot is
available.
Resetting a replicated resource
from which a snapshot was taken
to the snapshot version is a little
more complicated if the snapshot
is not available on all cluster
nodes on which the resource was
created. In this case, you first have
to remove the resource from the
cluster nodes where no snapshot is
available:

resource delete vulcan SharedData

LINSTOR may leave the resource
as a client resource without back-
end storage as a quorum tiebreaker
resource if this feature is enabled.
However, the tiebreaker resource can
also get in the way of the dataset
reset. You can disable the tiebreaker
feature for this resource by manually
deleting the tiebreaker resource. In
this case, simply repeat the resource
delete command. The resource is
then reset to the snapshot version
with the command:

snapshot rollback SharedData Snap1

Of course, after resetting the data-
set, further replicas of the replicated
resource can be added to the cluster
by creating the respective resource
again on additional cluster nodes –
which, as expected, requires a resync
of the dataset:

resource create --storage-pool thinpool U

 vulcan kronos SharedData

Snapshots are retained even if the
original resource from which they
were created is deleted. In the LIN-
STOR object hierarchy, snapshots are
linked to the resource definition (Fig-
ure 4). Therefore, you cannot delete
them until you remove all snapshots.

Integration with
Virtualization and
Container Platforms

Integration with various platforms
that need to provide storage volumes
automatically is more interesting for
storage automation than manual op-
eration of the storage cluster with the
LINSTOR client. Included are, on the
one hand, popular virtualization plat-
forms like OpenStack, OpenNebula, or
Proxmox and, on the other, container-
based platforms like Kubernetes.
LINSTOR can be integrated into these
platforms by means of appropriate driv-
ers so that, for example, when creating
a new virtual machine (VM) in Open-

Nebula, the virtual system disk for this
VM is automatically created according
to a profile provisioned in LINSTOR.
These profiles are known as resource
groups and can be used to specify cer-
tain properties, such as which storage
pool to use, a replica count for replica-
tion with DRBD, or the integration of a
data deduplication layer.
The respective resource, volume defi-
nitions, and corresponding resources
are created automatically, and various
options are also automated. For most
platforms, this means that the re-
sources can be allocated in the easiest
possible way. For example, the name
of the resource definition is chosen to
match the name of the respective VM.
The drivers for the respective platforms
are available from separate GitHub proj-
ects [2]; their names usually start with
the prefix linstor- (e.g., linstor-proxmox
and linstor-docker-volume<C>).

Conclusions
LINSTOR is a free package that gives
administrators a toolkit for automated
cluster management. It takes the
complexity out of DRBD management
and offers a wide range of functions,
including provisioning and snapshots.
Drivers are already on board for
integration into existing cloud frame-
works such as Kubernetes, Open-
Nebula, and OpenStack. A lively com-
munity [3] and commercial support
from the vendor are both available to
help you solve any issues. Q

Info
[1] LINSTOR: [https:// github. com/ LINBIT]
[2] Platform drivers: [https:// github. com/

 LINBIT? q=linstor& type=& language=]
[3] Community support: [https:// www.

 linbit. com/ linbit-software-download-
 page-for-linstor-and-drbd-linux-driver/]

Author
Robert Altnoeder is Principal Architect at LINBIT.Figure 4: Status of resources after a snapshot restore and a resync.

Q

44 A D M I N 58 W W W. A D M I N - M AGA Z I N E .CO M

LINSTORTO O L S

